From Fertilizer to Food: Tracing N Dynamics in Organic and Conventional Cropping Systems Using ¹⁵N

C.T. Inácio^{1,2,*}, P.M. Chalk^{1,3}, A.M.T. Magalhães¹

¹EMBRAPA Soils, Rio de Janeiro, Brazil ²Universidade Federal Rural do Rio de Janeiro ³International Atomic Energy Agency, Vienna, Austria

*caio@cnps.embrapa.br

Gaseous N losses and δ^{15} N signatures during storage or composting of animal wastes

Embrapa

FIG. 1. Relationship between cumulative losses of ammonia N from manure and δ¹⁵N of manure HRISTOV, A.N., et al., J. Environ. Qual. 38 (2009) 2438–2448

δ¹⁵N signatures of synthetic vs. organic fertilizers

Embrapa

FIG. 2 Relationship between N concentration and corresponding $\delta^{15}N$ of livestock manure compost (n = 37) LIM, S-S., et al., Korean J. Soil Sci. Fert. 43 (2010) 453-457

Embrapa

N fertilizer value of manure and derived compost

Organic Waste

N recovery from compost vs. feedstock

Reference	Crop	Treatment ^a	C: N	$g N m^{-2}$	${}^{15}\mathrm{N}^{\mathrm{b}}$	Recovery (%)
Ghoneim	Paddy	Rice straw	45.2	2.71	8.08	16.6
(2008)	rice	Rice straw compost	22.1		8.13	6.6
Kirchmann (1990)	Rye grass	Poultry manure	30.0	29	0.74	25.7
	0	PM + straw	14.9		0.73	3.8
		compost		•		

 Table 2 Recoveries of ¹⁵N labelled residues and derived composts

^aPM, poultry manure ^batom % excess

CHALK, P.M., et al., Plant Soil (2012) in press

Effect of compost on N fertilizer recovery

Reference	Crop	Compost	Fertilizer				
			Туре	g N m ⁻²	^D N ^a	Recovery (%) ^b	
Choi et al. (2001)	Maize	_ +	Urea	15	5.804	49.6a 39.7b	
Choi et al. (2002b)	Chinese cabbage	- +°	Urea	45	4.874	15.1a 15.9a - 18.8b	
Keeling et al. (2003)	Wheat	+	$\rm NH_4 NO_3$	17.5 7.0	10.0	40.8a 60.9b	
Takahashi et al. (2004b)	Paddy rice	- +	$(\rm NH_4)_2 SO_4$	4.04	0.974	42.8a 38.1b	

Table 3 Recoveries of ¹⁵N labelled fertilizers by crops in the presence and absence of added composts

^aatom % ¹⁵N excess

^bData within a column followed by a common letter are not significantly (P<0.05) different ^cCompost was applied at the rate of 20, 40 and 60 g N m⁻²

CHALK, P.M., et al., Plant Soil (2012) in press

MCHUMOR.COM by T. McCracken

 $\delta^{15}N$ composition would appear to be a **promising marker** to distinguish organicallyand conventionallyfertilized plant products

"So, Jack, did you use compost or chemical fertilizers?"

Organic vs. conventional product designation

Table 4 Statistical tests of differences in $\delta^{15}N$ composition between organic and conventional plant products

Product	δ ¹⁵ N (‰) ^a		$P^{\mathfrak{b}}$	Reference	
	Organic	Conventional			
Tomato	+8.1 (3.2)	-0.1 (2.1)	**	Bateman et al., 2007	
Lettuce	+7.6 (4.1)	+2.9 (4.3)	*		
Carrot	+5.7 (3.5)	+4.1 (2.6)	ns		
Orange fruit	+7.3 to +7.9	+ 5.1 to +6.1	***	Camin et al., 2011	
^a Data in parentheses are standard deviations of the mean ^b * , <i>P</i> <0.05; **, <i>P</i> <0.01; ***, <i>P</i> <0.001; ns, not significant;, no test applied					

INACIO, C.T., et al., Crit. Rev. Food Sci. Nutr. (2013) in press

Conclusions

• Efforts to improve N fertilizer value of composts

• Natural ¹⁵N abundance of compost as tracer

• Organic vs. Conventional $\delta^{15}N$ values complementary techniques + statistical tools

Embrapa

Thank You

Research collaboration:

Support:

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Embrapa

